Assessing Convincingness of Arguments in Online Debates with Limited Number of Features
نویسندگان
چکیده
We propose a new method in the field of argument analysis in social media to determining convincingness of arguments in online debates, following previous research by Habernal and Gurevych (2016). Rather than using argument specific feature values, we measure feature values relative to the average value in the debate, allowing us to determine argument convincingness with fewer features (between 5 and 35) than normally used for natural language processing tasks. We use a simple forward-feeding neural network for this task and achieve an accuracy of 0.77 which is comparable to the accuracy obtained using 64k features and a support vector machine by Habernal and Gurevych.
منابع مشابه
Length, Interchangeability, and External Knowledge: Observations from Predicting Argument Convincingness
In this work, we provide insight into three key aspects related to predicting argument convincingness. First, we explicitly display the power that text length possesses for predicting convincingness in an unsupervised setting. Second, we show that a bag-of-words embedding model posts state-of-the-art on a dataset of arguments annotated for convincingness, outperforming an SVM with numerous hand...
متن کاملThe effect of language complexity and group size on knowledge construction: Implications for online learning
This study investigated the effect of language complexity and group size on knowledge construction in two online debates. Knowledge construction was assessed using Gunawardena et al.’s Interaction Analysis Model (1997). Language complexity was determined by dividing the number of unique words by total words. It refers to the lexical variation. The results showed that...
متن کاملOnline Streaming Feature Selection Using Geometric Series of the Adjacency Matrix of Features
Feature Selection (FS) is an important pre-processing step in machine learning and data mining. All the traditional feature selection methods assume that the entire feature space is available from the beginning. However, online streaming features (OSF) are an integral part of many real-world applications. In OSF, the number of training examples is fixed while the number of features grows with t...
متن کاملAn Investigation of the Online Farsi Translation of Metadiscourse Markers in American Presidential Debates
The term metadiscourse rarely appears in translation studies despite the continuously growing body of research on discourse markers in different genres and through various perspectives. Translation as a product that needs to observe such markers for their communicative power and contribution to the overall coherence of a text within a context has not been satisfactorily studied. Motivated by su...
متن کاملWhich argument is more convincing? Analyzing and predicting convincingness of Web arguments using bidirectional LSTM
We propose a new task in the field of computational argumentation in which we investigate qualitative properties of Web arguments, namely their convincingness. We cast the problem as relation classification, where a pair of arguments having the same stance to the same prompt is judged. We annotate a large datasets of 16k pairs of arguments over 32 topics and investigate whether the relation “A ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017